
Improving Software Development Process through
Data Mining Techniques Embedding Alitheia Core

Tool
Ms Anupama Das1, Ms.Kaberi Das2, Prof (Dr) B.Puthal1

1Department of Computer Applications,2 Department of Computer Science and Engineering, Shiksha ‘O’ Anusandhan
University Jagmohan Nagar, Bhubaneswar, 751030, INDIA

Abstract—Research in the fields of software quality,
maintainability requires the analysis of large quantity of data,
which originate from software projects. It is a challenging task
in pre-processing the data and synthesizing the composite
results. It is very often an error prone task. Data mining
techniques are generally considered as the best for pre-
processing data. But there may be case that data is not up to the
mark for that, in this context an improvised core tool will be
used to facilitate software engineering research on large and
diverse data set .There may be the chance of not getting the
proper result for boosting up the software industry, but upto
certain extent it will be surely helpful in research field or to the
researchers for further innovative development.

Keywords— Data mining, Software engineering, Feature
selection, Alithea core tool.

I. INTRODUCTION
Software development in earlier times was focused on
creating algorithms and implementing through programs.
This technique was capable of solving almost all software
programs but evolution of sophisticated hardware required
continuous project planning resulted in low productivity,
heavy maintenance cost which led to failure of user
expectation and led to stagnation of software development.
Slowly it caused software crisis and highlighted in NATO
conference in 1968.This crisis was caused by the fact that
were no formal method and methodologies support tools for
project management.

Software community realized that to solve large software
intensive system, they borrowed ideas from other fields of
engineering and incorporated into software development.
This was the origin of software engineering. Software
engineering is a profession dedicated to designing,
implementing, and modifying software so that it is of higher
quality, more affordable, maintainable, and faster to build.
The IEEE Computer Society’s Software Engineering Body
of Knowledge defines "software engineering" as the
application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance of
software. The study of these approaches; led to the
application of engineering tools in software development.
Knowledge discovery process in databases (KDD) borrowed
from data mining gave rise to data mining algorithm that
were capable of solving many complicated software

problems. Data mining, a branch of computer science is the
process of extracting patterns from large data sets by
combining methods from statistics and artificial intelligence
with database management. Data mining is seen as an
increasingly important tool by modern business to transform
data into business intelligence giving an informational
advantage.

Software engineering data (such as code bases, exe-cution
traces, historical code changes, mailing lists, and bug
databases) contains a wealth of information about a project’s
status, progress, and evolution. Here objective is to refine
these data trough an algorithm so that it can be processed to
get a well defined software process. Algorithms are applied
so that the complexity, time delay and cost can be reduced.
This can be done by putting the data into the format for
further processing in subsequent stages.

Using data mining technique we will explore the potential of
this valuable data in order to better manage in subsequent
stages of development and produce high quality software
systems, which can be delivered on time and within
stipulated budget.
Mining algorithms fall into four main categories:

• Frequent pattern mining—finding commonly occurring
patterns;
 • Pattern matching—finding data instances for given
patterns;
• Clustering—grouping data into clusters; and
• Classification—predicting labels of data based on already-
labelled data.[1]

II EXISTING LAYER MODEL
Firstly existing model gives rise to the challenges of mining
software engineering data. Second, development frontier of
data mining practice in software engineering.Third,
intended to analyze successful cases of mining SE data.
Finally, intended to give an overview on commonly used
data mining tools. Our overview will help the participants
gain a better understanding of available tools. The
participants can use such tools in order to explore their data
and integrate data mining techniques in their research and
day to day work.

Anupama Das et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 629-632

629

Fig 1: OVERVIEW OF MINING SE DATA

Existing model in Fig 1 has got certain drawbacks for which
developers are facing problems in conducting research with
software repository.
The main problem developers face working with software
repository is that it is difficult to set up experiments that can
be extended or replicated as a result of which they invariably
face hurdles which the researcher must overcome in order to
experiments with huge data chunks from large number of
projects. To circumvent these hurdles we want to use a
Alitheia core tool which is an extensible platform for
software quality analysis. It is designed specifically to
facilitate software engineering research on large and diverse
data sets .By Alitheia core tool, integrating data collection
and pre-processing phases with an array of analysis services
and subsequently presenting the researchers with an easy to
use extension mechanism. So Alitheia core tool can be the
basis of shared tool and research data that will enable
researchers to focus on their research questions at hand
rather than spend time on reimplementing analysis tool.[10]

Fig 2: PROPOSED LAYER MODEL.

A. Software Engineering Data
 SE text data include bug reports, e-mails, code comments,
and documentation for API methods. Common types of text
mining algorithms include text clustering, classification, and
matching. Example text clustering applications include

clustering bug reports to detect duplicate bug reports and
thereby reduce inspection efforts, and assigning reports to
specific developers to fix the bugs. Example text
classification applications include recommending
assignment of a new bug report to a specific developer based
on the past assignment of old bug reports. Example text
matching applications include searching keywords in code
comments, API documentation, or bug reports, and detecting
duplicates of a given bug report among old reports.[2]

Fig 3: WORKFLOW OF PROPOSED MODEL

Software engineering data may have missing data. Missing
data analysis is a wide research area over the past 30-35
years. There are three approaches to this problem. First,
there are missing data ignoring techniques, e.g. (Haitovsky,
1968; Roth, 1994). Second, there are missing data toleration
techniques (Aggarwal and Parthasarathy,2001;Schuurmans
and Greiner, 1997). Third, there are missing data imputation
techniques which are the emphasis of this paper, e.g.
(Friedman, 1998; Little, 1988; Schafer and Olsen, 1998;
Shirani et al., 2000; Troyanskaya et al., 2001)
The missing data ignoring techniques simply delete the cases
that contain missing data Because of their simplicity, they
are widely used (Roth, 1994) This approach has two forms:

1) List wise deletion (LD): is also referred to as case deletion,
case wise deletion or complete case analysis. This method
omits the cases containing missing values. It is easy, fast,
does not ‘invent data’, commonly accepted and is the default
of most statistical packages. The drawback is that its
application may lead to a large loss of observations, which
may result in too small data sets if the fraction of missing
values is high and particularly if the original data set is itself
small, as is often the situation for software project estimation
(Myrtveit et al., 2001).
2) Pair wise deletion (PD): is also referred to as the
available case method. This method considers each feature
separately. For each feature, all recorded values in each
observation are considered (Strike et al., 2001) and missing
data are ignored. This means that different calculations will
utilise different cases and will have different sample sizes,
an undesirable effect. The advantage is that the sample size

SOFTWARE TASK (MAINTENANCE)

DATA MINING TECHNIQUES

SOFTWARE ENGINEERING DATA (TEXT DATA)

ALITHEIA CORE TOOL

DATA
COLLECTION

PROCESSED
THROUGH DATA
MINING
TECHNIQUES

ALITHEIA CORE
TOOL

SOFTWARE TASK
(MAINTENANCE)

SOURCE

Anupama Das et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 629-632

630

for each individual analysis is generally higher than with
complete case analysis. It is necessary when the overall
sample size is small or the number of cases with missing
data is large.
The missing data toleration techniques use a probabilistic
approach to handle missing data. They do not predict
missing data but assign a probability to each of the possible
values. Thus they are internal missing data treatment
strategies, which perform analysis directly using the data set
with missing values. The missing data imputation techniques
estimate missing values for the missing cases and insert
estimates obtained from other reported values to produce an
estimated complete case. The common forms are as follows:
1) Mean imputation (MI): is also referred to as unconditional
mean imputation. This method imputes each missing value
with the mean of reported values. The disadvantage is that it
leads to underestimation of the population variance
2) Regression imputation (RI): is also referred to as
conditional mean imputation .The regression model is built
using the complete observations. It tends to perform better
than MI, but still underestimates variance.
3) Hot-deck imputation (HDI): methods fill in missing data
by taking values from other observations in the same data
set.. The choice of which value to take depends on the
observation containing the missing value. Randomly
choosing observed values from donor cases is the simplest
hot-deck method.
4) Multiple imputations: means that the missing data are
imputed m > 1 times, with a different randomly chosen error
term added in each imputation. In this method, each missing
value is replaced by a set of m plausible values drawn from
their predictive distribution. After performing multiple
imputations, there are m complete, imputed data sets [3].

B) Feature Selection Method
 Feature selection is a pre-processing technique commonly
used on high dimensional data. Feature selection studies how
to select a subset or list of attributes or variables that are
used to construct models describing data. Its purposes
include reducing dimensionality, removing irrelevant and
redundant features, reducing the amount of data needed for
learning, improving algorithms’ predictive accuracy, and
increasing the constructed models’ comprehensibility.
Feature selection extracts the most important set of attributes
for model training. a feature-selection algorithm is part of
the classification rule. This is why feature selection must be
included when using cross-validation error estimation
Feature Selection for Unlabeled Data: Unsupervised
learning, or cluster analysis, aims to group similar objects
Many clustering algorithms assume that domain experts
have determined relevant features. But not all features are
important; some But not all features are important; some
might be redundant or irrelevant. And the presence of many
irrelevant features can even misguide clustering results.
Moreover, reducing the number of features increases
comprehensibility and ameliorates the problem of some
unsupervised-learning algorithms failing with high-

dimensional data [9]We examine the feature selection in the
context of software quality estimation (also referred to as
software defect prediction), where a classification model is
used to predict program modules (instances) as fault-prone
(fp) or not-fault-prone (nfp)([4],[5],[6])
Such a model is usually trained using software measurement
and defect data from previous development experiences, and
the model is then applied to predict the quality of target
(under-development) program modules. As a result,
practitioners can strategically allocate project resources and
focus more on those potential problematic modules. The
process of using feature selection provides a different
training data set for building the classification models.
Typically, feature selection techniques are divided into two
categories: wrapper-based approach and filter-based
approach. The wrapper-based approach involves training a
learner during the feature selection process, while the filter-
based approach uses the intrinsic characteristics of the data,
based on a given metric, for feature selection and does not
depend on training a learner. The primary advantage of the
filter-based approach over the wrapper-based approach is
that it is computationally faster. Saeys et al. [7] investigated
the use of ensemble feature selection techniques, where
multiple feature selection methods were combined to yield
results. Liu et al. [8] introduced the concept of active feature
selection, and investigated a selective sampling approach to
active feature selection in a filter model setting.

C) Alitheia Core Tool
Now coming towards the software engineering technique we
will using Alitheia core tool for software quality analysis
that is designed specifically to facilitate software
engineering research on large and diverse data sources, by
integrating data collection and pre-processing phases with an
array of analysis services, and presenting the researcher with
an easy to use extension mechanism. Alitheia Core aims to
be the basis of an ecosystem of shared tools and research
data that will enable researchers to focus on their research
questions at hand, rather than spend time on reimplementing
analysis tools. The Alitheia Core has been designed from the
ground up for performance and scalability Alitheia Core also
includes clustering capabilities through the cluster service.
The development of the cluster service was based on the
observation that after the initial metadata synchronization,
the workloads on the system processes are usually
embarrassingly parallel. The cluster service restricts access
to projects during metadata updates and allows metrics to be
run on several nodes in parallel..
The Alitheia Core itself is not concerned with mirroring data
from projects; it expects data to be mirrored externally.
This choice was made at the beginning of the project to
compensate for the large number of different data sources
which the system should work with The Alitheia Cores
system is a platform modelled around a pluggable,
extensible architecture that allows it to incorporate many
types of data sources and be accessible through various user
interfaces.[10]

Anupama Das et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 629-632

631

D) Software Maintenance
Software maintenance is one of the major concerns of
software development and maintenance organizations.
“Software maintenance is the process of modifying a
software system or component after delivery to correct faults,
improve performances or other attributes, or adapt to a
changed environment.”[12] Although the software
maintenance phase starts after the delivery of product to the
client, it covers a major portion of the cost, effort and time
involved in the project

1) Issues in Software Maintenance:
Impact Analysis, Complex code and Architecture, Lack of
Understanding, Undefined Process and Procedure for
Maintenance, Involvement of Senior Staff, Maintenance
Cost Estimation, Improper User Training, and Dependency
on Outside Supplier, Lack of Documentation, Measuring
Maintenance and Support Service. Motivation of Support
personal.[13]

2) Managing Software Maintenance Costs by
Developmental Techniques and Management Decision
during Envelopment

 1. Strive for Commonality2. Apply Industrial Engineering
Practices to Software3. Engage 4. Adopt a Holistic
Approach to Sustainment 5. Develop Highly Maintainable
Systems and Software6. Manage the Off-the-Shelf
Software7. Plan for the Unexpected8. Analyze and Refine
the Software Sustainment Business Case (use Parametric
software sustainment cost estimates)[14]

Software maintenance deals with the management of such
changes, ensuring that the software remains correct while
features are added or removed. Maintenance cost can
contribute up to 60–80% of software cost A challenge to
software maintenance is to keep documented specifications
accurate and updated as the program changes.
Outdated specifications cause difficulties in program
comprehension, which account for up to 50% of program
maintenance cost. [11]

IV. FUTURE WORK
More emphasis can be given in data collection, data pre-
processing, and feature selection. There can be some
advanced software engineering technique for pre-processing
data. We can also combine data mining technique and
software engineering technique for better pre-processing.
We should also concentrate on software maintenance cost.
Alitheia core system can be modelled as an extensible
architecture allowing incorporating many types of data
sources and accessible through various user
interfaces .Future plan work on this platform includes
development of plug –ins for support of other sources like
web services and full fledged API for accessing project meta
data in simple way.

V. CONCLUSION
Intensive software project requires handling huge number of
data. Data can be text data .it is necessary to pre-process the
data through data mining technique. For better pre-
processing we can utilize Alitheia Core Tool .It may or may
not be useful for software industry but it will be surely
beneficial for research field.

REFERENCES
[1] J. Han and M. Kamber, Data Mining: Concepts and Techniques,

Morgan Kaufmann, 2000
[2] Tao Xie and Suresh Thummalapenta, North Carolina State University

David Lo, Singapore Management University Chao Liu, Microsoft
Research “Data mining for software engineering”

[3] A new imputation method for small software project data sets Qinbao
Song a,*, Martin Shepperd b a Xi’an Jiaotong University, Xi’an,
Shaanxi 710049, China b Brunel University, Uxbridge, UB8 3PH, UK
Received 17 March 2005; received in revised form 30 April 2006;
accepted 3 May 2006 Available online 16 June 2006

[4] Y. Jiang, J. Lin, B. Cukie, and T. Menzies. Variance analysis in
software fault prediction models. In Proceedings of the 20th IEEE
International Symposium on Software Reliability Engineering, pages
99–108, Bangalore-Mysore, India, Nov. 16-19 2009.

[5] T. M. Khoshgoftaar, P. Rebours, and N. Seliya. Software quality
analysis by combining multiple projects and learners. Software
Quality Journal, 17(1):25–49, March 2009.

[6] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch. Benchmarking
classification models for software defect, prediction: A proposed
framework and novel findings. IEEE Transactions on Software
Engineering, 34(4):485– 496, July-August 2008

[7] Y. Saeys, T. Abeel, and Y. Peer. Robust feature selection using
ensemble feature selection techniques. In Proceedings of the European
conference on Machine Learning and Knowledge Discovery in
Databases - Part II (2008), pages 313–325, 2008.

[8] H. Liu, H. Motoda, and L. Yu. A selective sampling approach to active
feature selection. Artificial Intelligence,159(1-2):49–74, November
2004

[9] ”evolving feature selection”. Huan Liu, Arizona State University.
[10] A Platform for Software Engineering Research Georgios Gousios,

Diomidis Spinellis Department of Management Science and
Technlology Athens University of Economics and Business Athens,
Greece gousiosg,dds@aueb.gr

[11] Canfora G, Cimitile A. Software maintenance. Handbook of Software
Engineering and Knowledge Engineering. World Scientific: River
Edge NJ, 2001; 1:91–120

[12] IEEE Std. 610.12, “Standard Glossary of Software Engineering
 Terminology”, IEEE Computer Society Press, Los Alamitos, CA,1990
[13] A Framework for Software Maintenance and Support Phase Zafar

Nasir and Abu Zafar Abbasi Department of Computer Science
National University of Computer & Emerging Sciences Karachi,
Pakistan{zafar.nasir, abuzafar.abbasi}@nu.edu.pk

[14] Software Maintenance Implications on Cost and Schedule Bob Hunt,
Bryn Turner, Karen McRitchie Galorath Incorporated 100 North
Sepulveda Boulevard Suite 1801 El Segundo, California 90245(703)
201-0651 bhunt@galorath.com

[15] Mining Software Engineering Data Tao Xie North Carolina State Univ.
USA xie@csc.ncsu.edu Jian PeinSimon Fraser Univ. Canada
jpei@cs.sfu.ca Ahmed E. Hassan Univ. of Victoria Canada
ahmed@ece.uvic.ca

Anupama Das et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 629-632

632

